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A POSTERIORI FINITE ELEMENT BOUNDS FOR SENSITMTY DERIVATIVES OF

PARTIAL-DIFFERENTIAL-EQUATION OUTPUTS *

ROBERT MICHAEL LEWIS ?, ANTHONY T. PATERA $, AND JAUME PERAIRE §

Abstract. We present a Neumann-subproblem a posteriori finite element procedure for the efficient

and accurate calculation of rigorous, "constant free" upper and lower bounds for sensitivity derivatives of

functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative

error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding

properties and computational complexity of the method arc summarized; and illustrative numerical results

are presented.

Key words, a posteriori finite element bounds, sensitivity calculations, sensitivity equations

Subject classification. Applied and Numerical Mathematics

1. Introduction. Wc consider here an engineering system or component characterized by a design

variable (or vector) /3. We assume that the behavior of this system can bc adequately represented by the

solution of an appropriate partial differential equation, or perhaps set of partial differential equations. A

typical engineering "forward" analysis is thus initiated by the specification of the design variable/3; the partial

differential equation then yields a field variable (or set of field variables) u(.;/3); finally, on the basis of these

intermediate field variables, the output(s) s(fl) can be evaluated. Here "output" denotes the engineering

quantity of interest, that is, the metric relevant to the performance of the system. For our purposes here,

we assume that this output is a//near functional of the field variable, s(f_) = g(u(-;f_)).

Of ultimate interest, of course, is not the forward problem, but the "design problem." In brief, the design

problem articulates the engineering objectives and constraints as a function of the outputs, and then seeks

the best value of the design variable/3 with respect to the selected criteria. Successful solution of the design

problem requires repeated appeal to the forward problem in order to calculate (i) the output s(_), and (ii)

the sensitivity derivative of the output with respect to the design variable, s' - ds/d/3. The sensitivity

derivatives can be important both in informal and formal design optimization contexts: in the former, s'

provides promising new search directions as well as an indication of design "robustness"; in the latter, s'

provides the gradients required by (rapidly convergent) quasi Ncwton methods [11, 12].

For most problems of engineering interest, the underlying partial differential equations are far too com-

plex to admit analytical solution, and a numerical approximation must thus be introduced; we shall consider

here finite element methods. The requirements on the numerical approximation are twofold: the approxima-

*Revision: 2.1 Date: 1998/07/06 16:26:53 . Submitted to Finite Elements in Design. Address all correspondence to Michael

Lewis, ICASE, Mail Stop 403, NASA Langley Research Center, Hampton, Virginia, 23681-2199, buckaroo©lease.aria.

?ICASE, Mail Stop 403, NASA Langley Research Center, Hampton, Virginia 23681-2199, bucka.voo©lcase .edu. This research

was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the author

was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research

Center, Hampton, VA 23681-2199.

SDepartment of Mechanical Engineering, Masschusetts Instltutc of Technology. This work was supported by NASA under

Grant NAGl-1978, by the AFOSR under Grant F49620-94-1-0121, and by DARPA and ONR under Grant N00014-91-J-1889.

§Department of Aeronautics and Astronautics, Masschusetts Institute of Technology. This work was supported by NASA

under Grant NAGl-1978, by the AFOSR under Grant F49620-94-1-0121, and by DARPA and ONR under Grant N00014-91-

J-1889.



tion must be sufficiently coarse so as to permit repeated appeal within the design context; the approximation

must be sufficiently fine so that the numerical prediction of the desired outputs and associated sensitivity

derivatives is representative of the true performance of the system.

A posteriori error control offers great promise in reconciling these often conflicting requirements. A

posteriori analysis [3, 29] is composed of two critical ingredients: an estimation procedure which inexpensively

assesses the error in a particular numerical solution; and an adaptive refinement procedure which exploits

this error information to optimally improve the numerical solution. There are two objectives of a postcriori

error control: to eliminate numerical uncertainty -- arguably the single largest impediment to widespread

adoption of simulation based design; and to improve the numerical efficiency of the forward and optimization

problem thus permitting much more extensive design exploration.

In fact, greater certainty is a prerequisite for greater efficiency: we may consider a less expensive (or

even the least expensive) discrctization only if the associated error can be quantified, and hence constrained

and controlled; we are no longer compelled to choose either certainty or efficiency - both can be achieved.

Simultaneous control of approximation accuracy and approximation cost is particularly critical in the devel-

opment of robust and effective design optimization procedures: for example, the accuracy of the sensitivity

derivatives s_ strongly affects both the convergence, and the convergence rate, of (say) trust region [9, 19]

and line search [11, 20] quasi Newton techniques [28].

In all earlier a posteriori error analysis techniques, either in implicit approaches -- the measure

of the error is not related to the actual engineering outputs of interest (e.g., [15, 4, 2]), or in explicit

approaches the error estimates for the engineering outputs of interest involve numerous undetermined or

uncertain constants or functions (e.g.,J5, 6, 27]); in both cases, quantitative confirmation and hence both

certainty and efficiency is seriously compromised, and the relevance to engineering design greatly reduced.

In [21, 23, 25, 18] we propose a new class of a posteriori procedures that provide a critical new "enabling

technology": the ability to obtain inexpensive, sharp, rigorous, and quantitative ("constant free") bounds

for the numerical error in the engineering outputs of interest. Our mcthod is thus directly relevant to the

design process, and should lay the foundation for systemic application of a posteriori error control within

the engineering context.

Although our method provides a critical new capability, we are ncvcrtheless indebted to earlier a posteri-

ori implicit (Neumann subproblem) techniques [15, 4, 2] for several important conceptual and mathematical

ingredients in particular duality theory and flux "hybridization." The former, though not strictly neces-

sary and even sometimes restrictive provides a derivational mechanism without which the requisite

equations are very difficult to motivate; the latter technically quite subtle is the crucial component in

ensuring computational efficiency. Our framework may thus be viewed as a generalization of earlier implicit

techniques [2]; equivalently, these earlier techniques can be interpreted as special cases of our new formula-

tion. We present in [25] a more detailed comparison bctween our approach and earlier implicit (and explicit)

a posteriori error control proposals.

Our initial formulation [23, 25, 24] focused on symmetric coercive problems (e.g., Poisson and Linear

Elasticity), and nonsymmctric coercive problems (e.g., Convection Diffusion), as well as certain constrained

problems (the Stokes equations, central to hydrodynamics [22]). However, we have recently developed a

more general formulation [26, 17, 16] that greatly expands the class of equations and outputs that may be

treated; in particular, noncoercive problems (e.g., the Helmholtz equation), nonlinear problems (e.g., the

Burgers equation, the eigcnvalue problem), and nonlinear outputs can now be addressed. The approach is

relevant both to Galerkin techniques [17] and stabilized Galerkin methods [16].

[| | ]



In thispaperweextendourframeworkto thecasein whichwcareinterestednotonlyin errorbounds
andadaptiveproceduresfortheoutputs, but also in error bounds and adaptive procedures for the scnsitivity

derivative s I. As already indicated, effective control of the accuracy of sensitivity derivatives is crucial in

ensuring both the quality and efficiency of engineering optimization procedures [9, 10]. It is thus surprising

that there is relatively little work on a posteriori error estimation relevant to sensitivity derivatives [7], in

particular since there is considerable debate over the best way -- discrete or continuous [28, 13, 8, 14] --

to calculate the sensitivity functions and adjoints required to compute s p. In this work we aim to at least

partially address the paucity of a posteriori results for this important class of problems.

In Section 2 we describe our model problem. For our purposes here wc consider a simple one dimensional

coercive differential equation: noncoercivc, semi linear, and multi-dimensional problems [17] require virtually

no modifications to the framework, and will be addressed in future publications. Furthermore, in this first

paper we focus exclusively on a posteriori error estimators for sl; once these estimators arc obtained, the

adaptive procedures described in [25, 16] can bc directly applied. We next introducc in Section 3 the relevant

finite clement spaces and approximations. In Section 4 we describe the a postcriori procedure; Scction 5

then discusses the computational complexity of this procedure and the asymptotic bounding propertics of

the resulting lower and upper estimators. Finally, in Section 6, we present a series of illustrative numerical

results.

2. Problem Statement. As our model problem we shall consider a second order inhomogeneous

Dirichlet problem for u(x; fl),

= 0, u(1) = 1,

where f is the prescribed inhomogencity and f_ =]0, 1[ is the domain. Here v, p, and a are respectively strictly

positive, general, and non negative real quantities which arc independent of x but may depend on the design

paramcter ft. (Extension of the framework to permit these coefficients to vary with x is straightforward, as

will be clear from the exposition; examples will be presented in future publications.) Although we consider

here the Dirichlet problem, Neumann problems can also be readily treated.

Our point of departurc shall be the weak formulation: Find u c X D such that

(2.1) a(u, v) = (f, vv • x,

where X = H_(f_) and Z D = H_(f_). Wc recall that Hl(f_) is the space of functions v such that (i) v

and vz are in L2(f_) (that is, square integrablc [1]), and (ii) v(0) = v(1) = 0; similarly, H_(f_) is the set of

functions v such that (i) v and vx are in L2(f_), and (ii) v(0) = 0, v(1) = 1. The bilinear form a(w, v) (or

more precisely a(w, v; fl)) is given by

(2.2) a(w,v) = + +

Finally, f • H-_(a) (the dual of Hi(n)), and (,) thus denotes the duality pairing.

Our interest is not directly in u(x; _), but rather in the output s(_) = f(u(x; _)) and the sensitivity

derivative s_(_). The latter may be computed as

(2.3) s'(fl) = g(U(x; fl)),



whcrc U - u_(x; _) - _ E X, thc sensitivity function, satisfiesd_

(2.4) a(U, V) -=- (f', V) - a'(u, Y), VV e X,

in which

/ol(2.5) a'(w, v) = p'(_)w,v, + p'(_)w_v + a'(_)wv dx;

here _ denotes, as always, a--_" We could also readily permit the Dirichlet data to depend on/3; in this casc

U in (2.4) would satisfy inhomogeneous Dirichlct conditions. Finally, we note that the sensitivity function

is only one of two approaches to the computation of sensitivity derivatives; the adjoint formulation will be

considered in future publications.

For the formulation presented here the computation of the sensitivity derivatives thus requires, first, the

solution of (2.1) for u, then the solution of (2.4) for U, and finally the evaluation of s'(Z) from (2.3): (2.1)

and (2.4) are coupled but "triangular." Howcvcr, if the only dependence on/3 is through f (or, in fact, the

Dirichlet data) that is, u _= p_ -- a_ -- 0, and hence a_ -- 0 -- then the system is no longer coupled: we can

compute U and hence s _ independently of u and s. In this instance -- which arises in many design contexts,

including certain open loop control problems and shape optimization formulations we may directly apply

our earlier bound procedures [23, 25, 17] to (2.4) and (2.3); as wc shall scc, this "direct" approach is, in fact,

a special case of the more general framework developed in this paper.

Finally, we close this section by slightly generalizing our problem statement (2.1), (2.4), (2.3). In

particular, we introduce a real positive parameter a, and replace (2.1), (2.4), and (2.3) with

(2.6) v) = (f, v), w, • x,

(2.7) a(U, V) = a((f', V) - a'(u, V)), VV • X,

and

(2.8) s'(_) = _g(V),

respectively. It is clear from the linearity of our output functional that (2.1), (2.4), (2.3) and (2.6), (2.7), (2.8)

do indeed yield the same sensitivity derivative; this simply reflects the invariance of the sensitivity derivative

to rescalings of the design parameter. However, (2.6), (2.7), (2.8) permits us to control the magnitude of a'

relative to the magnitude of a in the coupled system (2.6), (2.7); this will be advantageous in the context of

our error bound procedure:

It will prove very convenient in what follows to write (2.6), (2.7) more succinctly in terms of a product

space. In particular, we define yD = X D ® X, and Y = X x X, and introduce the bilinear form

(2.9) w), (v,v)) = a(w, v) + a(w, v) + v),

for a and a' as defined in (2.2) and (2.5), respectively. It is then simple to see that (u, U) • yD satisfies

(2.10) E((u, U), (v, V)) = (f, v) -t- ¢r(f', V), V(v, V) • Y,

since variations in v and V recreate (2.6) and (2.7), respectively. (Note that g in (2.9) can be further

generalized: the v and V contributions need not bc assigned the same weight.)

F_II ]



3. Finite Element Approximation. We shall consider here only uniform meshes, although in practice

(adaptive) non uniform meshes are preferred. Wc first introduce a uniform triangulation of f_, T_, comprising

K_ elements T_ of uniform length 5 = K[1; the corresponding N6 = K_ + 1 nodes of TH are denoted by

x_i -- (i - 1)5, i -- 1,..., N_. Wc then definc our linear finitc element approximations spaces as

(3.1) X_ = {VIT, e _I(T_), VT_ E T6} nX,

(3.2) x_ = {vlT_ e el(T_), VT_ c _} nX D,

where _1 (T_) refers to the space of linear polynomials over T6. Finally, we define our approximation product

spaces as yD = X D ® X_ and Y_ = X_ ® X_.

Our finite element approximation (u_, U_) e yD, s_ e _ to (u, U) • yD s' • _ of (2.6), (2.7), (2.8) is

then given by

(3.3) C((us, V&), (% V)) = (f, v} -F cr(f', V), V(v, V) • Ys,

and

sl = le(u_).(3.4)

Summarizing the a priori theory, it is readily demonstrated that the problems (2.10) for (u, U) and (3.3) for

(u_, U_) are well-posed, yielding unique solutions. It can be further shown that, given sufficient regularity,

I[u - u_[ll and [IU - U_l]l vanish as 0(5), where ][. [[1 denotes the H 1 norm; in addition, application of

Aubin Nitsche theory to our product space formulation confirms that, as expected, Ilu- u ll0 and IIU- U lI0
vanish as O(62), where [[. ][0 denotes the L 2 norm. Finally, Aubin Nitsche theory also readily reveals that

both Is - s_] and Is' - s_[ vanish as O(tt 2) (here s_ = £(u_)).

For the purposes of our bound formulation we shall be interested in two particular finite element spaces:

a coarse, or design, approximation space, XH = X_=H; and a fine, or "truth," approximation, Xh _ X_=h.

We require that H/h is integral such that T_ is a refinement of TH. The corresponding coarse and fine

finite element approximations solutions of (3.3), (3.4) -- will bc denoted (UH, UH) • yD, s,H • _ and

yjD 8 t( uh' Vh) • h ' h • gt, respectively. In brief, the coarse approximation is the approximation that we must

use due to computational constraints; the fine approximation is the approximation that we would like to

use that is, the approximation on which we can (and will) safely assume that Uh, Uh, Sh, and s_ arc

all arbitrarily close to the corresponding exact quantities u, U, s, and s'. For future reference we define

e = Uh -- UH and E = Uh - UH; it follows from our a priori results that, for h sufficiently small compared to

H, [le[[1 and [[E[[1 vanish as O(H), while [[e]]0, [[E[I0, and [s_ - s_[ vanish as O(H2).

Our goal will be to obtain bounds for s_ -- the sensitivity derivative on the fine mesh -- at considerably

less cost than direct computation of s_ = g(Uh); indeed, the cost to compute the bounds will typically be only

slightly greater than the cost to compute the coarse sensitivity derivative, s_. The coarse approximation will

provide the "guesses" in fact, Lagrange multipliers which will ensure that these bounds are sufficiently

accurate; in particular, given our a priori results, we require that the bounds approach s_ as O(H2). We

will, indeed, achieve this desired (optimal) rate of convergence.

4. Bound Formulation.



4.1. Preliminaries: Spaces and Forms. We first introduce coarse and fine broken spaces,

(4.1) ZH -: {V]T. E _Ol(TH), VTH E TH}

(4.2) Xh = {V[Th 6 PI(Th), VTh 6 Th IV]T, 6 C°(TH), VT, • Ttl},

whcre C°(TH) is the space of continuous functions over TH; note that the fine broken space is continuous

within each TH. VV'ecan thus form the associated broken product spaces YH = XH ® XH and ]_h = )(h ®-_h.

We next introduce the hybrid flux space Q - _g, the members qi of which are defined at thc XHi, i =

1,..., Nil, the nodes of the coarse approximation; the corresponding product space is givcn by Z -- Q ® Q.

We thcn define the bilinear form b: ]?h(or ]_H) X Z --* _ as

N_ Nit

(4.3) b((v, V), (q, Q)) --- E [vlnqn + E [VinQn,
n=l n=l

where [w] denotes the jump at the interfaces: for any 1 < i < NH, [w], = w(x + ,) -- W(XHn ), where

w(x+n) (respectively, W(XHn)) refers to the limit as x --* Zg= from thc right (respectively, left); at the

two endpoints, wc define [w]l = w(0) and [W]N, = --w(1). The bilinear form imposes continuity (and

homogeneous Dirichlet boundary conditions) on members of thc broken spaces in the sense that

(4.4) YH = {(v, V) • f'H Ib((v, V), (q, Q)) = O, V(q, Q) • Z},

(4.5) Yh = {(v, V) • Yh [b((v, V), (q, Q)) = 0, V(q, Q) c Z}.

Extension of these spaces and bilinear forms to the multidimensional casc is discussed in detail in [23, 25, 18].

We shall also require several forms related to £ of (2.9). First, we define in standard fashion the

symmctric part of $,

E_((w,w), (v,y)) = a_(w,v) + as(w, v) + _(a'(_, y) + a'(v, w)),(4.6)

where a s is the symmetric part of a for our boundary conditions simply a with the convective tcrm

(p(fl)wxv) omitted. Wc then further decompose Ss = £._ + £_; we shall consider two such dccompositions,

Alternativc A and Alternative B. In Alternative A we choose

(4.7) C_((w, W), (v, V)) -- aS(w, v) + aS(W, V) + _ _'(wxV_ + v_Wx)dx,

O/o /o(4.8) _ ((w, W), (v, V)) = -_ ( p'(w_V + v_W)dx + a'(wV + vW)dx).

In Alternative B we choose for g_ and $_4

/oa u'(w_V_ + v_W_)dxe_((_, w), (_,v)) = a'(_, _) + a'(w, v) +

(4.9)

and

(4.10)

respectively.

°/01 /o1+ _ p'(w_V+vxW)dx+ Ip'l WVdx,

°/01 /o$_l((w, W), (v, V)) = _ a'(wV + vW)dx - 2]p' ] WVdx,



4.2. Estimator Procedure. The estimator procedure comprises five steps [23, 18, 17], which wc now

describe. Note that we unfold some of the product forms into somewhat more transparent notation in thc

next section when we discuss computational complexity in greater detail.

1. Compute (UH, UH) C yD from

(4.11) £((uH,UH),(v,V)) = (f,v) +a(f',V), V(v,V) • YH,

and define the associated residual

(4.12) T_UH((V, V) ) - (f, v) + a(f', V) - ,_( (UH, UH), (v, Y) ),

for any (v, V) in ?h.

2. Compute the adjoint (¢H, kOH) • YH from

(4.13) e((v, v), (¢., _)) = -_e(y), v(v, v) • Y_,

and define the associated residual

(4.14) nCn((v, Y)) = -_(Y) - E((v, V), (¢H, _H)),

for any (v, V) in ?h.

3. Find the hybrid fluxes (p_, pV) • Z and " ¢ P_'"(PH, H) • Z such that

(4.15) b((v, Y), (pUll, pU)) = n_H((V, V)), V(v, V) • ?H,

(4.16) b((v, V), (pC, p_)) = 7_¢H((V, V)), V(v, V) • YH.

These equations have a unique solution thanks to equilibrium (4.11), (4.12); in higher space dimensions the

matter is considerably more subtle [23, 18], though now well understood thanks to the important contribu-

tions in [15, 4, 2].

4. Find the reconstructed errors (_,/_v) • Yh, (e¢, E_) • ?h such that

(4.17) 2E_((_=,/_v), (v, V)) = 7_t ((v , Y)) - b((v, V), (pUll, pU)), V(v, V) • Yh,

(4.18) 2_, ((_ ¢, ]_'), (v, V)) = nCH((V, V)) - b((v, V), (PCH,P_)), V(v, V) • ?h.

The well poscdness of this problem for our different choices of £_, will be discussed shortly.

5. Compute the lower (s__) and upper (s__) estimators as s_: = _1 i A', where

(4.10) _1 = s_ - 2$_((_ u,/_v), (_¢,/_,r)),

(4.20) a' = 2V/E_.((__, _), (_, k_)) c_.((_, k_), (_, _)).



The difference between the upper and lower estimators the bound gap, A _ -- can be decomposed into

elemental contributions; the latter then serve as local indicators for adaptive refinement [25, 16].

Note that, for any given a, these estimators have already been optimized ovcr the scaling parameter _ of

[25, 18, 17l.

We now address the well posedness of Step 4; to begin, we consider Alternative A, with a = 0. We

first note from (4.7) that (4.17), (4.18) is singular in this case: E_((, ), (v, V)) vanishes for (v, V)[T, =

(c_ u, cTH), VTH E TH, where the cT'l, c_ n are real constants. However, thanks to the definition of the

hybrid fluxes, (4.15), (4.16), the problem is solvable; furthermore, it is clear from (4.19), (4.20) that the

final bounds in Step 5 do not depend on the nullspace component chosen though for theoretical purposes

we should select the reconstructed errors to be of zero mean over each TH [18]. We next note that, for

0 < a _< 2v/Iv'I, $_ is positive semi definite over ]_h, since

: v=v=ex

(4.21)

we have used here the standard inequality

b2(4.22) labl ÷ 7)

for a and b real numbers and _ = 1. It further follows from (4.21) that, first, (4.17), (4.18) is well posed

and stable (coercive) over the nullspace excised quotient space, and second, the argument of the radical in

Step 5 is always non negative. In short, the entire bound procedure is well posed. The case in which a _ 0

is, in fact, simpler: the problems are no longer singular, however the advantageous zero mean property still

obtains [18].

Alternative B leads to a rather similar analysis. We presume that p' _ 0, as otherwise Alternative A

and Alternative B are identical; and we first consider the more difficult case, a = 0. We find from (4.9)

that (4.17), (4.18) is again singular, however the nullspace is now different: £,_((, ), (v, V)) vanishes for
TH

(v,V)IT u = (cTH,o), VTH E TH, where the c I are real constants. However, due to the definition of the

hybrid fluxes, (4.15), (4.16), the problem is solvable; furthermore, it is clear from (4.19), (4.20) that the

final bounds in Step 5 do not depend on the nullspacc component chosen for theoretical reasons we select

_, _¢ to be of zero mean. (It can also be argued that the elemental mean of/_v, _,, though not zero, will

be suitably small.) We next note that, for 0 < a < 2v/(Iv'[ + [p_D, $_ is positive semi-definite over ]?h, since

/0$_((v, V), (v, V)) >_ v (v2_ + V2)dx - [v'l (v 2 + V_2)dx

/0(v 2 + V2)dx --b 21p'l V2dx,(4.23)

where we have again evoked (4.22) with e = 1. It follows, as for Alternative A, that first, (4.19), (4.20) is

well posed and stable (coercive) over the nulispace excised quotient space, and second, the argument of the

radical in Step 5 is always non negative. The case in which a _ 0 poses no problem: the problems are no

longer singular, however the zero mean property for _, _¢ still obtains.

5. Estimator Properties. In order to be of interest, the estimators must enjoy certain properties:

(i) the estimators _ _ must correspond to bounds under appropriate hypotheses, and converge to the8_, 8+

ill:I]'



trueresults_ sufficiently quickly; and (ii) the estimators must be inexpensive to compute relative to g(Uh).

We consider the former in Section 5.1, and the latter in Section 5.2. Note that, as regards computational

complexity, we effectively anticipate multi dimensional problems.

5.1. Bounding Properties. Wc consider only the lower estimator; similar results obtain for the upper

estimator. To begin, we note that it follows directly from the general formulation of [17, 16] that, for both

Alternative A and Alternative B,

s__ = S_h -- _*E_((e - _,E - E,), (e - _,E - [_)) - _*E_M((e,E), (e,E)),(5.1)

where

(5.2)

and

(5.3)

1 1

(e,k) = + A¢kv +
---_-e , K _

a* _-- v/E_. ((_,/_v), (_¢, _¢))/E_ ((_,,/_v), (_, ku))

is the optimal scaling parameter of [25, 17]. We assume that a is chosen such that E_. is positive definite.

Considering first the second negativc_definite -- term of (5.1), it is clear from our a priori results

for the H 1 error that this term should vanish no faster than O(H2). In fact, based on arguments similar

to those dcveloped in [17], it can bc shown that, given sufficient regularity, this negative definite term will

indeed vanish quadratically. We now turn to the third indefinite term. For Alternativc A we obtain

from (4.8) and the inequality (4.22) that

fo 1 _- )dxE_ fo 1(5.4) [E_((e, E), (e, E))[ _< 2([p' [ (se_ + + [a'] (e 2 + E2)dx).

From our a priori results for the H 1 and 5 2 error it follows that, for the choice E = H, IE_((e, E), (e, E))[

will vanish at least as fast as O(H3). For Alternative B, (4.10), we obtain in a similar fashion that

/0 /0(5.5) [E_((e,E),(e,E))[ <- 2(]°/I (e2 + E2) dx + IP'[ E2dx),

which, from our a priori results for the L 2 error, should vanish as O(H4).

We can thus draw two conclusions. First, for H sufficiently small, the indefinite term in (5.1) will be

subdominant (in fact, vanishingly small) relative to the principal (negative-definite) contribution, and thus

s_ will approach s_ from below we obtain an asymptotic lower bound. Similar arguments demonstrate

is an asymptotic upper bound. For the case in which onlythat s_. approaches s_ from above, and thus s+

u' and f' are non zero, we obtain rigorous lower and upper bounds for all H; in practice, we find that,

even for p' and a _ non zero, it is very difficult not to obtain bounds -- consistent with earlier applications

of our bound procedure to noncoercive and nonlinear problems [26, 17, 16]. Second, we conclude that the

estimators should converge to s_ at the optimal rate O(H 2) for our linear finite element approximation.

5.2. Computational Complexity. There are two issues that must bc addressed: first, how does the

computational cost of s __ (say) compare to that of s_ = £(Uh)?; and second, how does the complexity scale

when wc permit several outputs, s "n -= £m(u),m = 1,..., M, and several design paramcters (or "inputs"),

_j,j = 1,..., J? The former is discussed in great detail in [23, 25, 18, 16]. The essential point is that the

work on the fine mesh Step 4 -- is reduced to computations over the broken space ]Fh: it follows from



thesupcrlinearityofmostsolutionstrategies(at leastinhigherspacedimensions)[16]that computationof
(_,/_v) and(_,/_') ismuchIess extensive than computation of Uh, Uh indeed, often no more expensive

than computation of UH, UH. There are several other factors that further significantly decrease the cost of

(_,,/_v) and (_, _:v) relative to Uh, Uh: the equations for (_u,/_v) and (_¢, E_') will be symmetric, linear,

and positive definite even when the original operator enjoys nonc of these properties; and the equations

for (_,/_v) and (_,/_) admit obvious -- communication free, complctely concurrent -- medium grained

paxallclism.

Turning now to the multiple-output, multiple-input question, our interest is in computing bounds for

8 mthe MJ quantities ( h)j , the derivatives of the s_" -- gm(Uh) with respect to thc flj. We now address each

step of the bound procedure. We shall assume that thc usual nodal bases arc cvoked to transform thc weak

statcmcnts into appropriate linear algebraic systems, Ax = y; A and _yshall be denoted thc "matrix" and

"right hand side," respectively.

1. We first compute UH E X D,

(5.6) a(un, v) = (f, v), W e Xn,

and then (UH)j e XH,j = 1,...,J,

(5.7) a((u.b, v) = o(</s, v) - asO.., v)), w e x.,

where aS(w, v) (respectively fs) refers to the dcrivative of the bilinear form a (respectively f) with respect

to/_j. We must thus solve one system in (5.6), and J systems in (5.7). The J + 1 systems in (5.6), (5.7)

share a common matrix; only the right-hand side varies.

2. We first compute k_ c XH, m = 1,..., M,

(5.8) a(V, q2_) = -l gm(V), VV e Xg,
(7"

and then (¢H)_ • XH,j = 1,...,J,m = 1,...,M,

(5.9) a(v, (¢H)_) = --aS(v, _), Vv • XH.

We must thus solve M systems in (5.8), and MJ systems in (5.9). All M + MJ systems share a common

matrix in fact the transposc of the matrix associated with (5.6), (5.7); only thc right-hand side varies.

, _, pV, J, m3. We now compute the hybrid fluxes LPH, g)J • Z,j 1,..., J, and (p_, _ m= P_)S • Z,j = 1,..., =

1,..., M, from

(5.10) b((v, V), (p_, pV)j) = (T_)s((v, V)), V(v, V) • ]_H,

(5.11) (p.,P_b) = (nc-)7((',v)) , v(_, v) • ?.,

where

(n_)s((v, v)) = (1, ,) + o(fs, v) - Es((_., (u.)s), if, v)),

(n_)7((_, v) ) = -! e"*(v) - E_((_,v), ((¢-)7, _)),
o"

I0

!_I :I_:!



and £j is £ of (2.9) with a r replaced by aj. The systems (5.10) and (5.11) correspond to small, local problems

-- one problem (in fact four problems given the four hybrid fluxes) for each node of the coarse mesh. In the

case of M outputs and J inputs we will now require 2(J + M J) hybrid fluxes; in all 2(J + M J) cases the

particular matrices associated with each node arc identical.

4. We find the reconstructed errors (_,,,_v)j e Y'h,j = 1,...,J, and (_¢,/_')_ C Yh,j = 1,...,J,m =

1, ..., M, such that

(5.12) 2C_j((_,EU)j,(v,V)) = (T_UH)j((v,V)) -- b((v,V), (PH,_' pUH)j), V(v, V) • ]Yh,

(5.13) (v,v)) = (nc.)?((v,v)) - b((v,v), (p.,¢ ), v) • ?h,

where $_j corresponds to 8_ of (4.7) or (4.9) with a' replaced by a t. We must solve J systems in (5.12)

and M.I systems in (5.13). The former correspond to J different matrices; the latter to the same set of J

different matrices, each with M different right-hand sides.

5. Finally, we compute the lower ((s_)?) and upper ((s+)_) estimators as (s+)_ n = (_)_ + (A)_,j =

1,...,J,m = 1,...,M, where

(5.14) = (sH)y - -, k )j, k*)F),

(5.15) (A)7 = 2 V/E'_ j ((&_,/_u)j, (_, _u)j) E_ j((_¢,/_v)7, (&¢,/_)7)"

We now require MJ inner products; in any event, this calculation does not contribute significantly to the

computational cost.

We close with a brief summary. In the case of direct solution methods, in particular LU (e.g, skyline or

banded) solution procedures, the penalty for additional outputs and inputs is relatively small: on the coarse

mesh, no additional LU decompositions are required, only additional (much less expensive) forward/back

solves; on the broken fine mesh, the penalty is somewhat more significant, in particular as regards multiple

inputs - we must now perform J LU decompositions. (The stronger dependence on number of inputs

is perhaps to be expected given that our formulation is based on the sensitivity function.) In the case of

iterative solution methods it is more difficult to amortize additional right hand sides, and thus thc situation

is less encouraging. Finally, we remark that even with the adjoint formulation the bounds require additional

solves for multiple inputs; in essence, we obtain a bound on each individual sensitivity derivative, and thus

the usual economies of scale do not apply.

6. Numerical Results. We now present our numerical results. In all the examples wc shall set c_ = 0,

p = 10, and v = 1; for f = 0 the solution is a boundary layer of thickness O(_/p = 0.1) near the right

hand boundary, x = 1. In the first test case we look at variations in v; in the second test case we look at

variations in p; and in the third test case we look at variations in f. (In the interest of brevity wc do not

present our results for variations in a; no surprises are encountered.) We shall consider only Alternative

A for the _, - £_4 splitting, as rather extensive tests indicate that the bounds generated by Alternativc

A and Alternative B arc effectively indistinguishable. In all cases we take h = .001 for the fine mcsh, and

h _< H _< Hmax for the coarse mesh, where Hmax = .025. We shall present our results in the form of s'H/s'h,

11
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-gl/sl/h, s_-/s_h, and s+/s h as a function of H. These ratios are represcntcd on the plots as follows.

Legend: sHLB/S h = 0, sHB/s n = [::1, sH/s h = X, sH /s h = A.

In each of the three test eases we shall consider three different output functionals g(v): the mean over

the domain,

(6.1) el(v) = vdx,

which we shall denote the "mean" output; the value at a particular point in the domain (within thc boundary

layer), x = 0.95,

(6.2) g_(v) = v(.95),

which wc shM1 call the "point evaluation" output; and the flux at x = 1,

(6.3) ga(v) = a(v, x) - (f, x),

which we shall denote the "flux" output. As regards the flux output, it is readily shown by integration by

parts that, for u sufficiently smooth, ga(u) = vux(1); the advantage of g3 of (6.3) over the more obvious

representation g(v) = vvx(1) is that the former is a bounded functional while the latter is not. Boundedness

(or equivalently, continuity) of the output functional (i) ensures that the adjoint problem is well posed, and

(ii) greatly improves the convergence rate of the bounds. Note that the other two outputs are also bounded:

the mean output is bounded in all space dimensions; the point evaluation output is bounded only in one

space dimension.

Proceeding with the numerical tests, our first test case is _ = 0, p = 10, v =/3, f = 0, and/3 = 1; we

take a = 1, which ensures coercivity. We present in Figures 6.1, 6.2, and 6.3 on page 15 the bound results

for the mean, point evaluation, and flux outputs, respectively. As expected, we obtain bounds; the bounds

converge as O(H2); and the bounds are reasonably accurate even on the coarsest meshes. For the mean and

• however for thepoint evaluation outputs s_ and _ are considerably more accurate than the bounds s__, s+,

point evaluation output, the effectiveness of the estimator is, in fact, quite good. In any event, we emphasize

that the bounds provide certainty that can not be extracted from either s_/or _r.

In our second test case we choose _ = 0, p =/3, u = 1, f = 0, and/3 = 10; we again take a = 1. We

present in Figures 6.4, 6.5, and 6.6 on page 16 the bound results for the mean, point evaluation, and flux

outputs, respectively. The results are very similar to those for our first test case perhaps not surprising

sincc this second test case is, in effect, a rescaling of the first test case. Note, however, that the numerical

treatment of the two test cases is quite different: in the first case bounds are guaranteed for all H; in the

second case bounds are assured only for H sufficiently small. The numerical results of Figures 6.4, 6.5,

and 6.6 demonstrate that, in fact, bounds are obtained cven on the coarsest mesh - that is, the "L 2 - H 1

assumption" is robust.

In our third test case we choose a = 0, p = 10, u = 1, f = sin(27r/3x), and/3 = 5. We present in Figures

6.7, 6.8, and 6.9 on page 17 the bounds results for the mean, point evaluation, and flux outputs, respectively,

for a = 1. We present in Figures 6.10, 6.11, and 6.12 on page 18 the bound results for the mean, point

evaluation, and flux outputs, rcspcctively, but now for a very large (a = 100) effectively infinite (note

there is no coercivity limit on cr since u I = 0 for this test case). Comparison of Figures 6.7, 6.8, and 6.9 with

Figures 6.10, 6.11, and 6.12 clearly demonstrates the important role that scaling parameter optimization

12



canplayin achievingsharpbounds.In thisparticularexamplea --+ oc is easily identified as optimal: in

the limit cr ---+oc our general formulation reduces to the "direct" procedure to which we alluded in Section

2. The development of effective scaling parameter optimization procedures for more general situations is a

topic for future work.

In closing, wc simply remark that sensitivity derivatives arise with increasing frequency in many different

design and optimization contexts. Both certainty and efficiency are currently compromised by the lack of

quantitative, relevant error estimation procedures; the techniques presented and illustrated in this paper

represent an important first step in addressing this problem.
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FIG. 6.1. Results for the mean functional and v = 13 at fl = 1.
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FIG. 6.2. Results for the point evaluation functional and v = _ at f_ = 1.
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FIG. 6.3. Results for the flux functional and v = _ at/3 = 1.

15



1.3

1.2

1.1

1

0.9

0.8

0.7

f

0.005 0.01 0.015 0.02 0.025
H

FIG.6.4.Results for the mean functional and p = ]_ at _ = 1.
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FIG. 6.5. Results for the point evaluation Junctional and p = _ at _ = 1.
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FIG. 6.6. Results for the flux functional and p = 13 at I_ = 1.
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FIG. 6.7. Results for the mean functional and f(x) --- sin(2r13x) at ]3 = 5 with a = 1.
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FIG. 6.8. Results for the point evaluation functional and f(x) = sin(2_r/3x) at 13 = 5 with a = 1.
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FIG. 6.9. Results for the flux functional and f(x) = sin(27rflx) at ]3 = 5 with ¢r = 1.
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FIG. 6.10. Results for the mean functional and f(x) = sin(27r13x) at t3 = 5 with a = 100.
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